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Abstract. In this paper it is shown that the family of first-order Lagrangians for the t–J model and
the corresponding correlation-generating functional previously found can be exactly mapped into
the slave-fermion decoupled representation. Next, by means of the Faddeev–Jackiw symplectic
method, a different family of Lagrangians is constructed and it is shown how the corresponding
correlation-generating functional can be mapped into the slave-boson representation. Finally, in
order to define the propagation of fermion modes we discuss two alternative ways to treat the
fermionic sector in the path-integral formalism for the t–J model.

1. Introduction

Due to its relevance in describing the behaviour of strongly correlated electron systems, there
has been renewed interest in the study of supersymmetric generalizations of the Hubbard model
over the last few years. A complete review on strongly correlated electron systems together
with its connection to high-Tc superconductors is given in [1].

The Hubbard models based on the superalgebras spl(2, 1), osp(2, 2) or su(2, 2) have
been formulated using several approaches [2–6]. For instance, as suggested in [7–9], the
superalgebra spl(2, 1) could be useful for studying the model in the limit of infinite on-site
repulsion and with infinite-range hopping between all sites [10].

Many problems concerning correlated electron systems have been treated within the
framework of the decoupled slave-particle representations. Two of them are most important:
the slave-boson and the slave-fermion representations. The first one favours the fermion
dynamics, and therefore the slave-boson representation seems to be better for describing a
Fermi liquid state [11, 12]. Instead, the slave-fermion representation seems to give a good
response when the system is closed to the antiferromagnetic order [13, 14].

An important question in order to understand the physics of high-Tc superconductors, is
to solve the problem of how to go from one representation to the other. This is because in
high-Tc superconductors, both Fermi liquid and magnetic order states seem to be present.

On the other hand, one of the main problems appearing in these kinds of models is to
define the dynamics of fermions in the constrained Hilbert space, when double occupancy
of lattice sites is excluded. In this case a convenient representation is also given in terms of
slave-particles [15].
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As is known the slave-particle models exhibit a local gauge invariance which is destroyed
in the mean-field approximation. This local gauge invariance has an associated first-class
constraint which is difficult to handle in the path-integral formalism.

Another possible way to attack the problem was given in [16, 17] by using generalized
coherent states within the framework of the functional integral formalism.

Recently, the t–J model was analysed in the context of the path-integral formalism
[18, 19]. Our starting point was the construction of a particular family of first-order constrained
Lagrangians using the Faddeev–Jackiw (FJ) symplectic method [20], in the supersymmetric
version [21, 22]. In this approach any decoupling is used, but the field variables are directly the
Hubbard X-operators which verify the superalgebra spl(2, 1). In this way, we always work
with real physical excitations.

Next, by using path-integral techniques, the correlation generating functional and the
effective Lagrangian were constructed. Moreover, we have proved that our path-integral
representation can be directly related to that found in [23].

As mentioned above, one interesting and not completely solved problem present in this
constrained system is to study the fermionic sector when the double occupancy of lattice sites is
excluded. In particular, the role of the fermionic constraints, and thus the fermionic dynamics
in the constrained Hilbert space is a crucial problem that must be investigated.

Therefore, one of the main purposes of the present paper is to delve deeper into the
discussion of the different alternatives which allows us to define the fermionic propagator in
the t–J model.

In [19], within the framework of the perturbative formalism the Feynman rules with
appropriate propagators and vertices were found. In particular, a discussion on the fermionic
propagator was also given.

In order to continue with the study of fermionic propagation, different alternatives are
exposed in the present paper. We show that there is another way of obtaining fermionic
propagation to that given in [19]. This is done by working inside the path integral and integrating
out the two delta functions on the fermionic constraints.

Moreover, another interesting point is to check our formalism with those obtained by
means of the slave-particle representations. More precisely, we will show how our path-
integral expression for the partition function (see equation (4.1) of [18]), written in terms of
the Hubbard operators, can be mapped in the partition function coming from the slave-fermion
representation.

On the other hand, by following the FJ symplectic method, it is possible to show that a
new family of first-order constrained Lagrangians written in terms of the HubbardX-operators
exists. This family of classical Lagrangians is able to reproduce the Hubbard X-operator
commutation rules, verifying the graded algebra spl(2, 1). As can be shown this family of
Lagrangians, totally constrained in the boson-like Hubbard X-operators, can be mapped into
the slave-boson representation.

The paper is organized as follow. In section 2, the main results of [18, 19] are collected.
In section 3, by analysing the change in the constraints structure of the t–J model, it is shown
how starting from our path-integral expression for the partition function found previously, the
partition function coming from the decoupled slave-fermion representation can be recovered.
In section 4, by using the FJ symplectic method, a different family of first-order constrained
Lagrangians is found. This family of Lagrangians corresponds to the situation in which the
bosons are totally constrained. In such conditions it is possible to show how the corresponding
partition function can be mapped to the partition function coming from the slave-boson
representation. In section 5, two alternative ways of defining the fermion propagation are
studied. In section 6, conclusions are given.
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2. Preliminary and definitions

In the t–J model the three possible states on a lattice site are |α〉 = |0〉, |+〉, |−〉. These
states correspond, respectively, to an empty site, an occupied site with a spin-up electron, or
an occupied site with a spin-down electron. Double occupancy is forbidden in the t–J model.
In terms of these states the Hubbard X̂-operators are defined as

X̂
αβ

i = |iα〉〈iβ|. (2.1)

In equation (2.1), when one of the indices is zero and the other different from zero, the
corresponding X̂-operator is fermion-like, otherwise boson-like.

The Hubbard X̂-operators verify the following graded commutation relations:[
X̂
αβ

i , X̂
γ δ

j

]
± = δij

(
δβγ X̂αδi ±δαδX̂γβi

)
(2.2)

where the + sign must be used when both operators are fermion-like, otherwise it corresponds
to the − sign, and i, j denotes the site indices.

We assume that the family of classical constrained first-order Lagrangians in terms of the
Hubbard X̂-operators can be written as follows:

L = aαβ(X)Ẋ
αβ − V (0). (2.3)

In the FJ language [20] the symplectic potential V (0) is defined by

V (0) = H(X) + λa�a (2.4)

where λa are appropriate Lagrange multipliers, and so the constraints �a are defined by

�a = ∂V (0)

∂λa
. (2.5)

Therefore, the symplectic supermatrix associated with the Lagrangian (2.3) can be
formally written as [22]

MAB =



∂aγ δ

∂Xαβ
− (−1)|αβ||γ δ| ∂aαβ

∂Xγδ

∂�b

∂Xαβ

−(−1)|a||γ δ|
∂�a

∂Xγδ
0


 (2.6)

where the compound indices A = {(αβ), a} and B = {(γ δ), b} run in the different ranges of
the complete set of variables defining the extended configuration space, and |A| indicates the
Fermi grading.

Following [18], our starting point is to consider the following partition function for the
t–J model written in terms of the four boson-like operators (X+−, X−+, X++, X−−) and the
four fermion-like operators (X0+, X0−, X+0, X−0)

Z =
∫

DXαβi δ(�i1)δ(�i2)δ( i3)δ( i4)(sdetMAB)
1/2
i exp i

∫
dt L(X, Ẋ) (2.7)

where L(X, Ẋ) is given by

L(X, Ẋ) = i
∑
i

(1 + ρi)ui − 1

(2 − vi)2 − 4ρi − u2
i

(
X−+
i Ẋ

+−
i −X+−

i Ẋ
−+
i

)
+ 1

2 i
∑
i,σ

(
Ẋ0σ
i X

σ0
i + Ẋσ0

i X
0σ
i

) − µ
∑
i,σ

X0σ
i X

σ0
i −Ht–J (X) (2.8)

where ui = X++
i −X−−

i and vi = X++
i +X−−

i .
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The Greek indices α, β takes the values {+,−, 0}, the index σ takes the values {+,−}, and
Ht–J (X) is the usual t–J Hamiltonian

Ht–J =
∑
i,j,σ

tijX
σ0
i X

0σ
j + 1

4

∑
i,j,σ,σ̄

JijX
σσ̄
i X

σ̄σ
j − 1

4

∑
i,j,σ,σ̄

JijX
σσ
i X

σ̄ σ̄
j (2.9)

besides, in equation (2.8) a term depending on the chemical potential µ was added.
In equation (2.7) sdetMAB is the superdeterminant of the symplectic supermatrix MAB

defined in (2.6), and the bosonic and fermionic constraints at each site i are given, respectively,
by

�i1 = X++
i +X−−

i + ρi − 1 = 0 (2.10a)

�i2 = X+−
i X

−+
i + 1

4 (X
++
i −X−−

i )2 − [
1 − 1

2 (X
++
i +X−−

i )
]2

+ ρi = 0 (2.10b)

 i3 = X0+
i X

+−
i −X0−

i X
++
i = 0 (2.10c)

 i4 = X+0
i X

−+
i −X−0

i X
++
i = 0 (2.10d)

where ρi = X0+
i X

+0
i +X0−

i X
−0
i .

In equation (2.8), the Lagrangian coefficients as well as the constraints (2.10) were
determined by using the FJ symplectic method with the condition of reproducing the
generalized FJ brackets or graded Dirac brackets of the t–J model at the classical level (see
[18]).

In particular, the constraint (2.10a) deduced by consistency, is the completeness condition
which must be verified by the Hubbard X̂-operators and plays an important physical role
in this constrained model as will be seen later on. At this stage it is important to remark
that in Dirac’s language [24] the two bosonic constraints (2.10a) and (2.10b) are second
class.

Now, it is useful to write the boson-like Hubbard X-operators in terms of the real
components Sα (α = 1, 2, 3) of a vector field S and the fermion-like Hubbard X-operators in
terms of suitable component spinors (Grassmann variables) [18, 23]

X++
i = 1

2s
(1 − ρi)(s + Si3) (2.11a)

X−−
i = 1

2s
(1 − ρi)(s − Si3) (2.11b)

X+−
i = 1

2s
(1 − ρi)(Si1 + iSi2) (2.11c)

X−+
i = 1

2s
(1 − ρi)(Si1 − iSi2) (2.11d)

X−0
i = 'i+ X0−

i = '∗
i+ (2.11e)

X+0
i = 'i− X0+

i = '∗
i− (2.11f)

where s is a constant and the hole density in the new variables is written as ρi = '∗
i+'i+ +

'∗
i−'i−. Accounting for the fermionic constraints (2.10) results in (1 − ρi)(1 + ρi) = 1.

The real vector field S can be identified with the spin only when ρ = 0, i.e. in the pure
bosonic case.
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By using the second-class constraints (2.10a) and after the change of variables is made,
the partition function takes the form

Z =
∫

DSi1 DSi2 DSi3 D'iσ D'∗
iσ Dλi Dξi Dξ ∗

i (sdetMAB)
1/2
i

(
∂X

∂S

)
i

exp

(
i
∫

dt Leff

)
(2.12)

where the quantity
(
∂X
∂S

)
i

is the super-Jacobian of the transformation (2.11).
The effective Lagrangian Leff defined in equation (2.12), in terms of the new variables

reads

Leff = 1

2s

∑
i

Si1Ṡi2 − Si2Ṡi1
s + Si3

+ i
∑
i,σ

'̇∗
iσ'iσ + µ

∑
i,σ

'iσ'
∗
iσ −Ht–J

+
∑
i

[
λi(S

2
i1 + S2

i2 + S2
i3 − s2) + ξ ∗

i ('−(Si1 − iSi2)−'+(s + Si3))

+
(
'∗

−(Si1 + iSi2)−'∗
+(s + Si3)

)
ξi

]
(2.13)

where the Hamiltonian Ht–J of the t–J model is written as

Ht–J =
∑
i,j,σ

tij'iσ'
∗
jσ +

1

8s2

∑
i,j

Jij (1 − ρi)(1 − ρj )
[
Si1Sj1 + Si2Sj2 + Si3Sj3 − s2

]
. (2.14)

In equation (2.13) the parameters λi , ξ ∗
i and ξi are suitable bosonic and fermionic Lagrange

multipliers, respectively.
At this stage it is important to remark that our Lagrangian formalism is independent of

the underlying lattice dimension.
In the next section we are going to analyse equation (2.7) within the framework of the

decoupled slave-particle representations.

3. Slave-particle representations

The standard way of constructing the classical Hamiltonian formulation for slave-particle
models and to subsequently give the canonical quantization is developed in [15]. The starting
point is to consider the general classical first-order Lagrangian for n bosonic fields ba and m
fermionic fields fb defined on a lattice

L(b†
a, ba, f

†
b , fb) = 1

2 i
∑
i,a

(b
†
ia ḃia − ḃ†

iabia) + 1
2 i

∑
i,b

(f
†
ibḟib − ḟ †

ibfib)−H(b†
a, ba, f

†
b , fb).

(3.1)

Both bosons and fermions fields, are submitted to the slave-particle first-class constraint
at each lattice site i,

�i =
∑
a

b
†
iabia +

∑
b

f
†
ibfib − 1 = 0. (3.2)

Looking at equations (3.1) and (3.2) it can be seen that when the index a takes the values
± and the index b takes only one value, the six fields (four boson and two fermion fields)
define the slave-fermion representation. In contrast, when the index a takes only one value
and the index b takes the values ±, the six fields (two boson and four fermion fields) define
the slave-boson representation.

With the aim of comparing our results with others obtained previously, in this section we
consider the slave-fermion representation. In particular, it is possible to compare the correlation
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generating functional (2.7) with that obtained from the slave-fermion representation, and this
relation is not trivial.

In our approach all the constraints are second class in the Dirac picture [24], while in
the slave-particle representations the constraint (3.2) is first class. Thus, when the Hubbard
X-operators are decoupled a local gauge symmetry is made evident.

The starting point is the correlation generating functional (2.7) with the Lagrangian (2.8).
By computing the (sdetMAB)

1/2
i appearing in equation (2.7) we find

(sdetMAB)
1/2
i = −i

(1 + ρi)

X++
i

(3.3)

where ρi evaluated on the constraints is written as

ρi = X0+
i X

+0
i

X++
i

.

Integrating out the fields components X−−
i , X0−

i and X−0
i by using the delta functions on

the constraints written as follows:

δ(�i2) = δ(X++
i X

−−
i −X+−

i X
−+
i ) = 1

X++
i

δ

(
X−−
i − X+−

i X
−+
i

X++
i

)
(3.4a)

δ( i3) = δ(X0+
i X

+−
i −X0−

i X
++
i ) = X++

i δ

(
X0−
i − X0+

i X
+−
i

X++
i

)
(3.4b)

δ( i4) = δ(X+0
i X

−+
i −X−0

i X
++
i ) = X++

i δ

(
X−0
i − X+0

i X
−+
i

X++
i

)
(3.4c)

and taking into account the equality

(1 + ρi)δ

(
X−0
i − X+0

i X
−+
i

X++
i

)
= δ

[
(1 − ρi)

(
X−0
i − X+0

i X
−+
i

X++
i

)]
= δ

(
X−0
i − X+0

i X
−+
i

X++
i

)
(coming from the property of the Grassmann variables), the partition function (2.7) takes the
form

Z =
∫

DX++
i DX+−

i DX−+
i DX+0

i DX0+
i δ

(
X++
i +

X+−
i X

−+
i

X++
i

+
X0+
i X

+0
i

X++
i

− 1

)

× exp

(
i
∫

dt L∗(X, Ẋ)
)

(3.5)

where L∗(X, Ẋ) is given by

L∗(X, Ẋ) = i

2

∑
i

1

X++
i

(
X−+
i Ẋ

+−
i −X+−

i Ẋ
−+
i

)
+

i

2

∑
i,σ

1

X++
i

(
X+0
i Ẋ

0+
i +X0+

i Ẋ
+0
i

) −H(X).

(3.6)

As is known the change of variables that allows us to write the remaining five Hubbard
X variables in terms of the fields variables in the decoupled slave-fermion representation is
defined by

X++
i = b

†
i+bi+ (3.7a)

X+−
i = b

†
i+bi− (3.7b)

X−+
i = b

†
i−bi+ (3.7c)
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X0+
i = bi+f

†
i (3.7d)

X+0
i = b

†
i+fi. (3.7e)

From equations (3.7) it can be seen that the five Hubbard X-fields are given in terms of
the six fields of the slave-fermion representation, so it is necessary to introduce an additional
condition among the six fields of the slave-fermion representation to make the transformation
possible.

We assume the following general linear form for the conditions in each lattice site:

φi =
∑
a

(Gia bia +G†
ia b

†
ia) +Hifi −H †

i f
†
i +Ki = 0 (3.8)

where Gia , G
†
ia , Ki are bosonic parameters and Hi , H

†
i are fermionic (Grassmannian)

parameters.
As was commented above, when the Hubbard X-operators are written in a decoupled

representation a local gauge symmetry is made evident. Thus, from a constrained system
with a set of second-class constraints, it changes into a constrained system with a first-class
constraint, and therefore a gauge-fixing condition must be imposed. Therefore, equation (3.8)
is none other than the gauge-fixing condition which corresponds to the local gauge symmetry
appearing in the decoupled representation [15].

A convenient choice is to take in equation (3.8): Gi+ = i, G†
i+ = −i and the remaining

coefficients all zero, i.e equation (3.8) reads

φi = i(bi+ − b†
i+) = 0. (3.9)

Later on, in equation (3.5) we introduce

1 =
∫

Db†
iσ Dbiσ Df †

i Dfi δ(X++
i − b†

i+bi+)δ(X
+−
i − b†

i+bi−)δ(X
−+
i − b†

i−bi+)

×δ(X0+
i − f †

i bi+)δ(X
+0
i − b†

i+fi)δ(φi)Ji (3.10)

where Ji is the super-Jacobian of the transformation (3.7) and (3.9), and its value is Ji =
(bi+ + b†

i+).
By integrating out the five variables Xi , the partition function can be written as

Z =
∫

Db†
iσ Dbiσ Dfi Df †

i δ(�i)δ(φi)Ji exp

(
i
∫

dt L(bσ , b
†
σ , f, f

†)

)
. (3.11)

It is easy to see that the super-Jacobian Ji is equal to minus the determinant of the Dirac
bracket constructed from the first-class constraint �i and the gauge-fixing condition (3.9), i.e
− det[�i, φi]D , where the first-class constraint�i in the slave-fermion representation is given
by

�i =
∑
iσ

b
†
iσ biσ + f †

i fi − 1 = 0. (3.12)

In equation (3.11) the Lagrangian L(bσ , b†
σ , f, f

†) reads

L(bσ , b
†
σ , f, f

†) = 1
2 i

∑
i,σ

(b
†
iσ ḃiσ − ḃ†

iσ biσ ) + 1
2 i

∑
i

(f
†
i ḟi − ḟi†fi)−H(b†

iσ , biσ , f
†
i , fi).

(3.13)

Therefore, the above considerations show that our correlation-generating functional (2.7)
can be mapped into the correlation generating functional (3.11) coming from the slave-fermion
representation [15]. This mapping is a consequence of the fermionic constraints present in
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our expression for the correlation generating functional (2.7). We can also conclude that it is
not possible to relate our correlation generating functional (2.7) with that corresponding to the
slave-boson representation.

The next question is how to construct from the symplectic FJ formalism a new family of
first-order Lagrangian by using the Hubbard X-operators of the graded algebra spl(2, 1) as
fields variables, in such a way that the results can be mapped in the slave-boson representation.
The problem is solved in the next section.

4. Classical Lagrangian and constraints. Slave-boson representation

By following [18, 25], we assume that the family of classical first-order Lagrangians in terms
of the Hubbard X̂-operators can be written as follows:

L = aαβ(X)Ẋ
αβ − V (0). (4.1)

where the five Hubbard X̂-operators Xσσ
′

and X00 are boson-like and the four Hubbard
X̂-operators Xσ0 and X0σ are fermion-like. In the present case the symplectic potential is
V (0) = H(X).

The Lagrangian functional coefficients aαβ(X) that a priori are unknown must be
determined by consistency in such a way that the graded algebra (2.2) for the Hubbard X̂-
operators is verified. By following the steps of [18] it is straightforward to construct the
symplectic supermatrix associated with the Lagrangian (4.1). Thus the symplectic supermatrix
MAB is written in the form

MAB =
(
Abb Bbf

Cfb Dff

)
. (4.2)

The Bose–Bose parts Abb is a (10 × 10)-dimensional matrix and it takes the form

Abb =




∂aσσ ′

∂Xσ
′′σ ′′′ − ∂aσ ′′σ ′′′

∂Xσσ
′

∂a00

∂Xσ
′′σ ′′′ − ∂aσ ′′σ ′′′

∂X00

∂�σσ ′

∂Xσ
′′σ ′′′

∂�00

∂Xσ
′′σ ′′′

− ∂a00

∂Xσσ
′ +
∂aσσ ′

∂X00
0

∂�σσ ′

∂X00

∂�00

∂X00

−∂�σ ′′σ ′′′

∂Xσσ
′ −∂�σ ′′σ ′′′

∂X00
0 0

− ∂�00

∂Xσσ
′ −∂�00

∂X00
0 0



. (4.3)

The Bose–Fermi partsBbf (the Fermi–Bose partsCfb = −BTbf ) is a (4×10)-dimensional
rectangular supermatrix given by

Bbf =




∂a0σ

∂Xσ
′′σ ′′′ − ∂aσ ′′σ ′′′

∂X0σ

∂aσ0

∂Xσ
′′σ ′′′ − ∂aσ ′′σ ′′′

∂Xσ0

∂a0σ

∂X00
− ∂a00

∂X0σ

∂aσ0

∂X00
− ∂a00

∂Xσ0

−∂�σ ′′σ ′′′

∂X0σ
−∂�σ ′′σ ′′′

∂Xσ0

− ∂�00

∂X0σ
− ∂�00

∂Xσ0



. (4.4)

The Fermi–Fermi parts Dff is the (4 × 4)-dimensional matrix given by

Dff =



∂a0σ

∂X0σ ′ +
∂a0σ ′

∂X0σ

∂aσ0

∂X0σ ′ +
∂a0σ ′

∂Xσ0

∂a0σ

∂Xσ
′0 +

∂aσ ′0

∂X0σ

∂aσ0

∂Xσ
′0 +

∂aσ ′0

∂Xσ0


 (4.5)
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where�σσ ′ and�00 are the appropriate bosonic second-class constraints defining the structure
of the constrained model.

Once the symplectic algorithm is applied and the correspondent differential equations are
solved the solution we found is

ai0σ = i

2X00
i

Xσ0
i aiσ0 = i

2X00
i

X0σ
i (4.6)

and the boson-like Lagrangian coefficients are all zero.
The set of bosonic second class constraints is given by

�00
i = X00

i +X++
i +X−−

i − 1 = 0 (4.7a)

�σσ
′

i = Xσσ
′

i − Xσ0
i X

0σ ′
i

X00
i

= 0. (4.7b)

In particular, the constraint (4.7a) is the completeness condition necessary to avoid double
occupancy at each site.

In these conditions the symplectic supermatrix is invertible and the matrix elements of its
inverse gives the correct Hubbard graded brackets (2.2), i.e.

(MAB)−1 = −i(−1)|εA|[Â, B̂]
± (4.8)

where |εA| is the Fermi grading of the field variable A.
Consequently, the dynamics in this condition is given by the Lagrangian

L(X, Ẋ) = − i

2

∑
i,σ

1

XX00
i

(
Ẋ0σ
i X

σ0
i + Ẋσ0

i X
0σ
i

) −H(X). (4.9)

The Lagrangian (4.9) together with the bosonic constraints (4.7) correspond to a situation
in which the bosons are totally constrained and the dynamics is carried out only by the fermions.

The partition function corresponding to this solution reads

Z =
∫

DXαβi δ
[
X00
i +X++

i +X−−
i − 1

]
δ

[
Xσσ

′
i − Xσ0

i X
0σ ′
i

X00
i

]
(sdetMAB)

1/2
i

× exp

(
i
∫

dt L(X, Ẋ)

)
. (4.10)

By computing the superdeterminant of the symplectic matrix appearing in (4.10) we find

(sdetMAB)
1/2
i = (

detA
[
det(D − CA−1B)

]−1 )1/2 = (X00
i )

2. (4.11)

Now, in order to confront the correlation generating functional (4.10) with those coming
from the slave-boson representation some algebraic manipulations are needed.

The first step is to make the following change of variables:

ϕi1 = X00
i − b†

i bi = 0 (4.12a)

ϕiσ0 = Xσ0
i − f †

iσ bi = 0 (4.12b)

ϕi0σ = X0σ
i − fiσ b†

i = 0. (4.12c)

Analogously to what happens in the slave-fermion representation, in the decoupled slave-
boson one, an additional condition among the fields is also needed. From the general linear
equation (3.8) we choose by simplicity the following reality condition:

ϕi2 = b
†
i − bi = 0. (4.12d)
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The super-Jacobian Ji of the transformation (4.12) is given by

Ji = − (b
†
i + bi)

(b
†
i bi)

2
. (4.13)

Now, by introducing in equation (4.10) the unity

1 =
∫

Df †
iσ Dfiσ Db†

i DbiJi δ(Xσ0
i − f †

iσ bi) δ(X
0σ
i − fiσ b†

i ) δ(b
†
i bi −X00

i ) δ(b
†
i − bi)

(4.14)

and integrating out all the fields variablesXαβi , after same algebraic manipulations it is possible
to show that the partition function (4.10) takes the form

Z =
∫

Db†
i Dbi Df †

iσ Dfiσ δ(�i) δ(φi)(bi + b†
i ) exp

(
i
∫

dt L(b†, b, f †
σ , fσ )

)
(4.15)

where �i and φi are, respectively, the first-class constraint and the gauge-fixing condition in
the radial gauge [12], appearing in the partition function of the slave-boson representation [17].
They, respectively, read

�i = b
†
i bi +

∑
i,σ

f
†
iσ fiσ − 1 = 0. (4.16)

φi = i(bi − b†
i ) = 0. (4.17)

Again, we note that the factor (b + b†) in equation (4.15) is precisely the value of
det[�i, φi]D appearing in the gauge theories containing first-class constraints.

The Lagrangian L(b†, b, f †
σ , fσ ) defined in equation (4.15) is given by

L(b†, b, f †
σ , fσ ) = 1

2 i
∑
i

(b
†
i ḃi − ḃ†

ibi) + 1
2 i

∑
i,σ

(f
†
iσ ḟiσ − ḟ †

iσ fiσ )−H. (4.18)

In summary, from our approach and working with the HubbardX-operators without using
any decoupling representation, a new family of Lagrangians (4.9) is obtained. The respective
correlation generating functional (4.10) is mapped into the solution provided by the slave-
boson representation. It is important to note that the new path integral (4.10) in terms of the
Hubbard X-operators, to the best of our knowledge, was developed in the present paper for
the first time.

We can see once more how a second-class constrained model written in terms of the
Hubbard X-operators, when written in terms of the decoupled slave-particle representations,
is transformed into a constrained system where a local gauge symmetry is made evident.

We think that the results we can obtain by using the partition function (4.10) with the
Lagrangian (4.9) can be useful for regimes where the system is close to a Fermi liquid state.

In a forthcoming paper the partition function (4.10) will be studied in detail within the
context of the perturbative formalism. Having in mind the difficulty of treating the first-class
constraint within the path integral (4.15), our purpose is to construct the Feynman rules and the
diagrammatics starting from the path integral (4.10). Once an appropriate fermion propagator
can be found, our first objective will be to analyse the properties of the fermion spectral
function.
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5. Two alternative ways to define the propagator of fermion modes

In this section we discuss two alternative ways of treating the fermionic sector in order to define
the propagation of the fermion modes. As commented above, a crucial problem in the t–J
model is to define the fermionic propagation in the constrained Hilbert space, when double
occupancy is forbidden.

With the purpose of studying this problem, in [19] the correlation generating functional
(2.12) was considered at finite temperature by means of the ‘Euclideanization procedure’.
Moreover, it was assumed that we are close to an undoped regime where the system is an
antiferromagnetic insulator. Under this condition there are a small number of holes and it can
be assumed that the hole density ρi = 〈ρi〉 = constant. The constant value ρ of the hole
density must be determined later on by consistency, for a given value of the chemical potential
µ.

In these conditions, it is possible to treat the non-polynomic Lagrangian (2.13) within the
framework of the perturbative formalism, and so it can be partitioned as follows:

Leff = LB(S, λ) + LF (η) + LI (S,η) (5.1)

where

LB(S, λ) = − i

2s

∑
i

S̃i1
˙̃Si2 − S̃i2 ˙̃Si1
s + s ′

+ 2s ′
∑
i

λi S̃i3

+
1

8s2

∑
i,I

J ′ [S̃i1S̃(i+I )1 − S̃i2S̃(i+I )2 − S̃i3S̃(i+I )3 + S̃2
i

]
(5.2a)

and

LF (η) + LI (S,η) =
∑
i,σ

'̇∗
iσ'iσ + µ

∑
i,σ

'iσ'
∗
iσ +

∑
i,j,σ

tij'iσ'
∗
j σ̄ +

∑
i

η̄iMiηi . (5.2b)

Considering the bilinear bosonic part of equation (2.13), for a constant value of the hole
density and taking Jij = constant, we arrive at equation (5.2a). In equation (5.2a) was defined
J ′ = J (1 − ρ)2. Moreover, the symbol

∑
I indicates a sum over nearest-neighbour sites.

Besides, in equation (5.2a) it was assumed that the vector S is written as

S = (0, 0, s ′) + (S̃1, S̃2, S̃3) (5.3)

where S̃1, S̃2, S̃3 are the fluctuations. So, equation (5.2a) corresponds to the lowest order of
the system fluctuating around an antiferromagnetic state. Moreover, we must consider s ′ �= s

because as is known the local magnetization in an antiferromagnetic state is reduced from its
classical value, even for the pure Heisenberg model. The value of s ′ must also be determined
by consistency.

In equation (5.2b) the four-component spinor η = (Ψ
ξ

)
, is constructed from the two

spinors Ψ and ξ. The physical two-component spinor Ψ = (
'+

'−

)
is restricted by the fermionic

constraint equations (2.10c), (2.10d), and the two-component spinor ξ = (
ξ+

ξ−

)
is a Majorana

spinor.
In the same equation the (4 × 4)-dimensional matrix M is defined by

M =
(

0 Is + S · σ

Is + S · σ 0

)
(5.4)

where σ = (σ1, σ2, σ3) are the Pauli matrices.
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In this regime the diagrammatics and the Feynman rules can be found. In particular,
the bilinear part of the bosonic sector written in equation (5.2a) gives rise to the usual
antiferromagnetic magnon propagator (see [19]).

The bilinear fermionic part LF (η) of equation (5.2b) can be written in terms of the four-
component spinor η and it is given by

LF (η) =
∑
i,j

η̄iα(G
−1
(0)ij )

αβηjβ (5.5)

where in the Fourier space the symmetric non-singular (4 × 4)-dimensional matrix G−1
(0) is

defined by

(G
αβ

(0))
−1(k, νn, ν

′
n) =




−(iνn + µ) εk
1
2 (s + s ′) 0

εk −(iνn + µ) 0 1
2 (s − s ′)

1
2 (s + s ′) 0 f g

0 1
2 (s − s ′) g −f


 δ(νn, ν ′

n). (5.6)

In equation (5.6) the quantities k and νn are, respectively, the momentum and the Matsubara
frequency of the fermionic field, and was defined as εk = −t ∑

I exp(−iI · k).
The functions f and g appearing in equation (5.6) are totally arbitrary. As can be easily

seen, these functions do not appear in the Lagrangian due to the Majorana condition on the
two-component spinor ξ.

In this scenario, the symmetric matrix defining the fermionic free propagator G(0)αβ is
given by the inverse of the matrix (5.6). The physical components of the free propagator are
given by the matrix elementsG(0)11,G(0)12,G(0)21 andG(0)22 and they were explicitly written
and analysed in section 4 of [19]. So, the Feynman rules propagators and vertices are given
straightforwardly and therefore the boson and fermion self-energy can be computed.

However, some particular features of the fermionic free propagator must be emphasized.
The trick of introducing an auxiliary two-component Majorana spinor is a way to obtain

a free functional G(0) that really propagates physical fermionic modes.
The electron spectral function is defined from the fermionic propagator G(0)αβ by

considering the components G(0)11 and G(0)22. The matrix elements directly connected with
the electronic properties, such as, for example, the Fermi surface (FS), are preciselyG(0)11 and
G(0)22. The electronic spectral function measured in photoemission experiments [26] must be
related to minus the imaginary part of these matrix elements.

In contrast to the fermion propagator obtained by means of the standard Green function
method [27], our fermion propagator contains two poles. It is important to say that for a given
filled factor the chemical potential we obtain is exactly the same as that obtained by using the
standard Green function method.

By plotting the electron spectral function (see [19, figure 1]) we can see that the peak at
negative energy must be interpreted as the extraction of an electron, while the peak at positive
energy represents the addition of an electron to the system. Therefore, the two peaks account
for the photoemission and the inverse of the photoemission, respectively. The presence of
these two peaks implies that for a given value of k, the state is not completely filled or empty.
Photoemission experiments are only sensitive to the first peak. Then the first peak of our
propagator must be related to the excitation measures in photoemission.

An alternative way to treat the fermionic sector is to start from equation (2.7) and to
work inside the path integral. So, by integrating out the two delta functions on the fermionic
constraints  i3 and  i4, the partition function can be written as follows:

Z =
∫

DXσσ ′
i DX0+

i DX+0
i δ(�i1) δ(�i2)(sdetMAB)

1/2
i exp i

∫
dt L∗(X, Ẋ) (5.7)
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where L∗(X, Ẋ) is given by

L∗(X, Ẋ) = i

2

∑
i

1

X++
i

(
X−+
i Ẋ

+−
i −X+−

i Ẋ
−+
i

)
+

i

2

∑
i,σ

1

X++
i

(
Ẋ0+
i X

+0
i + Ẋ+0

i X
0+
i

) −H(X).

(5.8)

The total Hamiltonian H is defined by

H = Ht–J + µ
∑
i,σ

X0σ
i X

σ0
i (5.9)

where the Hamiltonian Ht–J defined in equation (2.9) must be evaluated on the fermionic
constraints  i3 and  i4.

Due to the nonlinearity of the constraints (2.10c) and (2.10d), when the path integration
on the two fermionic fields X0−

i and X−0
i is carried out, the non-polynomial structure of the

kinetic fermionic part of the Lagrangian is made evident, as can be seen from equation (5.8).
After the four boson-like X-Hubbard operators are related to the real components Sα

(α = 1, 2, 3) of a vector field S and the remaining two fermion-like X-Hubbard operators
are written in terms of suitable component spinor fields (see equations (2.11)), the correlation
generating functional (5.7) takes the form

Z =
∫

DSi1 DSi2 DSi3 D'i− D'∗
i− Dλi (sdetMAB)

1/2
i

(
∂X

∂S

)
i

exp

(
i
∫

dt Leff

)
. (5.10)

Now, the Lagrangian Leff defined in equation (5.10) is given by

Leff = 1

2s

∑
i

(1 − ρi)
(
Si1Ṡi2 − Si2Ṡi1

s + Si3

)
+ is

∑
i

1

s + Si3

(
'̇∗
i−'i− + '̇i−'∗

i−
)

−H +
∑
i

λi(S
2
i1 + S2

i2 + S2
i3 − s2) (5.11)

where in equation (5.11) and hereafter the tilde over the fluctuations is omitted.
The Hamiltonian H written in terms of the real vector variable S and the two-spinor-

component fields '−i and '∗
−i , reads

H =
∑
i,j

tij

(s + Si3)(s + Sj3)

[
Si1Sj1 + Si2Sj2 + Si3Sj3 + s2 + s(Si3 + Sj3)

+ i(Si1Sj2 − Si2Sj1)
]
'−i'∗

−j +
1

8s2

∑
i,j

Jij (1 − ρi)(1 − ρj )

× [
Si1Sj1 + Si2Sj2 + Si3Sj3 − s2

]
+ 2sµ

∑
i

(
1

s + Si3

)
'−i'∗

−i . (5.12)

Again, the path integral (5.8) is considered within the framework of the perturbative
formalism at finite temperature, and we assume that we are close to an undoped regime (an
antiferromagnetic insulator).

After a rotation of spins on the second sublattice by 180◦ about the S1-axis is performed,
the Euclidean and rotated Lagrangian LEReff is obtained, and so the lowest order of the effective
Lagrangian (5.11) can be partitioned as follows

LEReff = LB(S, λ) + LF ('−i , '∗
−i ) + LI (S, '−i , '∗

−i ) (5.13)
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where

LB(S, λ) = − i

2s
(1 − ρ)

∑
i

Si1Ṡi2 − Si2Ṡi1
s + s ′

+ 2s ′
∑
i

λiSi3

+
1

8s2

∑
i,I

J ′ [Si1S(i+I )1 − Si2S(i+I )2 − Si3S(i+I )3 + S2
i

]
(5.14a)

and

LF = s

s + s ′
∑
i

('̇∗
i−'i− + '̇i−'∗

−i ) +
2µs

s + s ′
∑
i

'i−'∗
i− (5.14b)

LI =
∑
i,j

tij

s + s ′
(
Si1 − iSi2 + Sj1 + iSj2

)
'i−'∗

j−. (5.14c)

At this stage it is important to note that our effective theory does not contain fermion
dispersion. This feature is also present in the slave-fermion theories when the fermion dynamics
is generated via interaction with virtual magnons.

By making a Fourier transformation it is possible to see that the bilinear bosonic part
of the Lagrangian (5.14a) allows us to recover the structure of the bosonic propagator
(antiferromagnetic magnons) given by

Dab
(0)(q, ωn, ω

′
n) =




J ′z
4s2d(0)

(1 − γq) − 2ωn
(s + s ′)d(0)

(1 − ρ) 0 0

2ωn
(s + s ′)d(0)

(1 − ρ) J ′z
4s2d(0)

(1 + γq) 0 0

0 0 0
1

2s ′

0 0
1

2s ′
−J

′z(1 − γq)
16s2s ′2




×δ(ωn, ω′
n). (5.15)

In equation (5.15) the quantity d(0) is given by

d(0) =
(

2(1 − ρ)
s + s ′

)2 (
ω2
q + ω2

n

)
(5.16)

where the frequency ω2
q is defined by

ωq
2 =

[
zJ ′

4s2

(
s + s ′

2(1 − ρ)
)]2

(1 − γ 2
q ). (5.17)

Moreover, in equation (5.15) z is the number of nearest neighbours and was defined the
quantity γq = 1

z

∑
I exp(iI · q).

Analogously, the bilinear fermionic part (5.14b) reads

LF =
∑
k,νn

'∗
−(k, νn)G

−1
0 '−(k, νn) (5.18)

where we have defined

G−1
0 = 2s

s + s ′
(iνn − µ). (5.19)
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The inverse of this scalar function given by

G0 = s + s ′

2s

1

iνn − µ (5.20)

is a (non-propagating) functional which only depends on the Matsubara frequency νn.
Finally, in the approximation that we consider the unique three-leg vertex is defined by

Ua = 1

s + s ′




ε(k′) + ε(k)

i(ε(k′)− ε(k))
− s

s + s ′
[i(ν + ν ′)− 2µ]

0


 δ(q + k − k′)δ(ω + ν − ν ′). (5.21)

At this point, the problem is to analyse the bilinear fermionic sector, in order to give
the prescriptions for the propagation of the fermionic modes. The usual way to solve
the propagation of fermions is by means of the Dyson equation. As known the Dyson
theorem allows us to compute the inverse of the corrected fermion propagator in terms
of the free-fermion propagator and the self-energy. Therefore, the propagator G(k, νn) =
[G−1

0 (νn)−@(k, νn)]−1 can be calculated in a straightforward way within the self-consistent
Born approximation [28, 29]. By using standard techniques the following expression for the
self-energy at zero temperature is found

@(k, iνn) = (1 + ρ)

2N
t2z2

∑
q

[
γk[1 − (1 − γ 2

q )
1/2]1/2 − γk+q[1 + (1 − γ 2

q )
1/2]1/2

]2

(1 − γ 2
q )

1/2

× 1

iνn − ωq − µ−@(k + q, iνn − ωq) . (5.22)

The expression (5.22) is useful in the strong-coupling case (t > J ). On the other hand, the
self-consistent solution of this equation is necessary in order to obtain fermionic propagation,
and it must be performed numerically. Once an appropriate self-energy function @(k, iνn) is
found the propagator G(k, ν) remains well defined and it is possible to compute numerically
the spectral function defined by A(k, ν) = − 1

π
limε→0G(k, ν + iε). Finally, as well known,

the correction to the bosonic propagator is given by

Dab = [D−1
(0)ab −Dab

]−1
(5.23)

where D−1
(0)ab is the inverse of the free bosonic propagator (5.15) and the bosonic self-energy

Dab reads

Dab(q, ωn) =
(
s + s ′

2s

)2 ∑
k,νn

UaUb

[iνn + µ−@(k, νn)][i(νn + ωn) + µ−@(q + k, νn + ωn)]
.

(5.24)

As can be seen from the above equation the dimension of the underlying lattice and the
physics depend on the parameters z, γq and εk , though our general formalism is dimension
independent.

It is important to confront our results with others given previously in the literature related
to the spin-polaron theories [28]. Like in these theories our starting point was to assume an
antiferromagnetic order state. This physical assumption is directly connected with the fact that
at lowest order the fermion is not propagating (see equation (5.20)). Then, in order to describe
a metallic phase where the holes move coherently on the lattice, it is necessary to solve the
self-consistent equation (5.22).
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The solution of our equations (5.22) and (5.24) together with a quantitative comparison
with the spin-polaron theories is an important matter that deserves further study.

Another point to take into account in a future work is to study the relationship between
our matrix propagator G(0)αβ (see equation (4.13) of [19]) and those obtained by solving
equation (5.22) self-consistently.

As is known, any model or approach will be considered as a good candidate to describe
high-Tc superconductors when it is able to answer the question of why the antiferromagnetic
long-range order disappears for small values of doping (for instance, ρ = 0.04–0.05). In the
last few years this problem was attacked from different approaches [13, 14, 30]. In a future
work and from our formalism, we will also have a response to give concerning this important
point related to the disappearance of the antiferromagnetism.

In the present section, the magnetic excitations that we have considered are
antiferromagnetic magnons and in addition we have assumed a strong long-range
antiferromagnetic order. Therefore, our next step must be to study the instability of the
antiferromagnetic order and to analyse against which phase this is unstable. In order to have
some idea about this fact, in [19] we have studied the magnon self-energy effects on the
magnetic spectral function. Besides the softening of the antiferromagnetic magnon we have
also found a reduction of the magnetic spectral signal. These results were obtained using our
two pole bare fermionic propagator. In the near future and in order to improve our calculation
we will solve a self-energy coupled problem for both magnetic and electronic dynamics.

6. Conclusions

As shown first in [25] for the pure bosonic case (su(2) algebra), in a classical Lagrangian
formalism it is not possible to introduce the full Hubbard algebra by means of constraints.
Consequently, in a path-integral formulation complete information about the Hubbard algebra
cannot be introduced; namely, the commutation rules, the completeness condition and the
multiplication rules for the Hubbard X-operators. So, the Heisenberg model treated in the
Lagrangian picture only admits two second-class constraints, and these are the completeness
condition X++ + X−− + X00 = 1 and the nonlinear constraint X+−X−+ + 1

4 (X
++ − X−−)2 =

s2.
The latter constraint in not really the group Casimir operator. It can be shown that the

presence of such a constraint is consistent with the quantization of a spin system in the limit
of large spin s, or equivalently for magnetic order state.

A similar situation actually occurs in the case in which the Hubbard X-operators verify
the graded algebra spl(2, 1), but in this case at least two solutions are possible. When the
Hubbard X-operators close the graded algebra spl(2, 1) the t–J model described in terms of
a first-order Lagrangian has the following possible solutions.

(a) One is the family of first-order Lagrangians (2.8) together with the set of second-
class constraints (2.10). Two of them are bosonics and the other two are fermionics.
In particular, the constraint (2.10a) is the completeness condition. As was shown
the corresponding path-integral formalism is mapped into the decoupled slave-fermion
representation. So, in this case our correlation generating functional (2.7) favours the
magnon dynamics of the system with a strong magnetic order state feature (consistent
with the large-s nature of the constraint (2.10b)).

(b) The different family of first-order Lagrangians (4.9) together with the new set of second-
class constraints (4.7) is also a possible solution. In this case all the constraints are
bosonic, and (4.7a) is again the completeness condition. As it can be seen the remaining
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four constraints (4.7b) are related to the multiplication rules. In this situation the bosons
are totally constrained and the dynamics is carried out only by the fermions. Moreover,
we note that no nonlinear constraint of the type (2.10b) appears. As was shown the path-
integral formalism corresponding to this dynamical situation is mapped in the slave-boson
representation. Therefore, in our correlation-generating functional (4.10) the fermion
dynamics with a strong feature of Fermi liquid is preferred.

It is possible to conclude that once the set of second-class constraints is chosen, different
families of Lagrangians are obtained, and so we can ensure that each family contains different
physics.

It is worthwhile to remark that both Lagrangian formalism are independent of the
dimension of the underlying lattice.

Moreover, as was seen in all the cases the completeness condition appears as necessary.
As is well known the completeness condition involves an important physical meaning. Such
a condition avoids the double occupancy at each lattice site at the quantum level.

Finally, in section 5 two alternative ways of defining the fermion propagator were
developed. By means of the trick of introducing auxiliary Majorana spinors, a free fermion
matrix propagator having two poles was found. Later on, by integrating out two of the fermions
using the delta functions, it was possible to obtain the non-propagating scalar function (5.20)
in the fermionic sector. From this free ‘propagator’ and by means of the Dyson equation
the fermion self-energy can be evaluated straightforwardly within the self-consistent Born
approximation.

Since our path-integral formalism is mapped in the slave-fermion formalism and taking
into account that equation (5.22) for the self-energy at zero temperature has a similar structure
to that obtained from the spin-polaron theories [28], both results allow us to ensure that our
approach is consistent.
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